Cie, 1988c); program(s) used to solve structures: Xtal3.2 SIMPEL (Hall et al., 1992); program(s) used to refine structures: Xtal3.2 CRYLSQ; molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: Xtal3.2 BONDLA CIFIO.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1347). Services for accessing these data are described at the back of the journal.

References

Bergerhoff, G. (1996). DIAMOND. Visual Crystal Structure Information System. Gerhard-Domagk-Straße 1, Bonn, Germany.
Cotton, S. (1991). In Lanthanides and Actinides. Oxford University Press.
Evans, C. H. (1990). In Biochemistry of the Lanthanides. New York: Plenum Press.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 User's Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Lippard, S. J. (1967). Prog. Inorg. Chem. 8, 109-193.
Niinisto, L. (1987). Inorg. Chim. Acta, 140, 339-343.
Panagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O. \& Terzis, A. (1995). Inorg. Chem. 34, 4918-4920.
Pope, G. W., Steinbach, J. F. \& Wagner, W. F. (1961). J. Inorg. Nucl. Chem. 20, 304-313.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1988b). EMPIR. Data Setup for Empirical Absorption Correction. Version 6.2. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1988c). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.
Watson, W. H., Williams, R. J. \& Stemple, N. R. (1972). J. Inorg. Nucl. Chem. 34, 501-508.

Acta Cryst. (1998). C54, 1236-1238

Aqua(2-ethylpyridine- N)(N-salicylidene-glycinato- $\left.O, N, O^{\prime}\right)$ copper(II)

Salam A. Warda
Department of Chemistry, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de

(Received 30 January 1998; accepted 26 March 1998)

Abstract

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the copper(II) centre has a square-pyramidal environment with a tridentate N-salicylideneglycinato Schiff base dianion and a 2 -ethylpyridine ligand coordinated in the basal plane. The apex of the pyramid is occupied

by the O atom of the coordinated water molecule at a distance of 2.388 (3) \AA. The monomeric units are associated through hydrogen bonds, forming infinite chains. There are two magnetically different copper(II) polyhedra.

Comment

The tetrameric structure of (4-ethylpyridine)(N-salicylideneglycinato)copper(II), which crystallizes with a tetragonal unit cell, has been reported recently (Warda, 1997). In this communication, the structure of the closely related title complex, aqua(2-ethylpyridine)(N salicylideneglycinato)copper(II), (I), is reported.

(I)

The $\mathrm{Cu}^{\text {II }}$ ion has square-pyramidal [4+1] coordination geometry, with the tridentate Schiff base N-salicylideneglycinato dianion and the monodentate 2 -ethylpyridine ligand in the basal plane (Fig. 1). The apical position is occupied by a water O atom at a distance of 2.388 (3) \AA. It is noteworthy that coordination of water to $\mathrm{Cu}^{\mathrm{II}}$ is invariably at the apical site of a tetragonally elongated square pyramid. This seems to be a general result for five-coordinate Cu^{11} complexes (Warda, 1998, and references therein).

Fig. 1. The asymmetric unit of the title compound with the atomic numbering scheme. Ellipsoids are drawn at the 50% probability level.

The pyridine ring is inclined with respect to the basal plane (through atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and N 2) at an angle of $80.0(1)^{\circ}$ and the Cu atom lies $0.155(1) \AA$ out of this plane, displaced towards the O 4 atom (PLATON;

Spek, 1994). The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond distances in the equatorial plane [$\mathrm{Cu}-\mathrm{N} 1.930$ (3) and 2.003 (3) \AA, and $\mathrm{Cu}-\mathrm{O} 1.911(2)$ and $1.976(2) \AA$] do not differ significantly from those of the other members in this series (Warda, 1998, and references therein).

The monomers are associated through hydrogen bonding, forming a chain via $\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 3$ interactions that is connected by $\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 2$ hydrogen bonds to a second (inverted) chain. These chains run parallel to [001]. The former hydrogen bond is much shorter than the latter [O4. . O3 2.749 (4) and O4 \cdots O2 2.924 (4) \AA A].

In the title compound, the copper(II) polyhedra are arranged in two magnetically inequivalent orientations with 2γ of $17.9(2)^{\circ}$; the \mathbf{g} tensor is slightly affected by this value, indicating a distorted ferrodistortive ordering ($0<2 \gamma<45^{\circ} ; 2 \gamma$ is the angle describing the orientation of the main axes of the polyhedra with respect to one another and should therefore be carefully distinguished from the cell parameter with the same symbol). The value of the g tensor allows the tilting angle between differently oriented copper(II) polyhedra to be estimated as 19°, which is in good agreement with the X-ray data.

It is worth comparing the monoclinic structure in this report with the closely related orthorhombic structure of polymeric (3-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1994). The position of the substituent in the pyridine ligand has a crucial effect on the metric of the lattice, which is monoclinic in the present case (2-ethylpyridine), but is orthorhombic in the 3-ethylpyridine (Warda, 1994) and tetragonal in the 4-ethylpyridine compound (Warda, 1997).

Experimental

The title compound was synthesized from aqua(N-salicylideneglycinato)copper(II) hemihydrate according to the methods of Ueki et al. (1967) and Warda (1994), with 2-ethylpyridine in a 1:3 ethanol-water mixture at 333 K . Dark-green prismatic crystals grew within a few days.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)-\right.$
$\left(\mathrm{H}_{2} \mathrm{O}\right)$]
$M_{r}=365.86$
Monoclinic
$P 2_{1} / c$
$a=14.7592(15) \AA$
$b=10.7763(11) \AA$
$c=10.0983(7) \AA$
$\beta=92.473(7)^{\circ}$
$V=1604.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.514 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

$\begin{array}{ll}\text { Enraf-Nonius CAD-4 } & R_{\text {int }}=0.013 \\ \text { diffractometer } & \theta_{\text {max }}=25.06^{\circ}\end{array}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=18.93-22.10^{\circ}$
$\mu=1.382 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism
$0.36 \times 0.12 \times 0.05 \mathrm{~mm}$
Dark green
ω scans
Absorption correction:
ψ scans (Siemens, 1996a)
$T_{\text {min }}=0.636, T_{\text {max }}=0.937$
3009 measured reflections
2846 independent reflections
1904 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.095$
2846 reflections
214 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0508 P)^{2}\right]$
where $P=\left(F_{\sigma}^{2}+2 F_{C}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\AA^{-3}}$
(1.14 \AA from Cu)
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e}^{\AA^{-3}}$
($0.95 \AA$ from Cu)
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)
$h=-17 \rightarrow 3$
$k=-5 \rightarrow 12$
$l=-12 \rightarrow 12$
2 standard reflections frequency: 120 min intensity decay: none
$(\Delta / \sigma)_{\max }<0.001$
Table 1. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 1$	$1.911(2)$	$\mathrm{Cu}-\mathrm{N} 2$	$2.003(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.930(3)$	$\mathrm{Cu}-\mathrm{O} 4$	$2.388(3)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.976(2)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$92.97(12)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$90.45(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$169.93(11)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 4$	$99.72(11)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2$	$83.7(11)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 4$	$89.38(11)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2$	$91.87(11)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 4$	$89.77(11)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$171.94(12)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 4$	$96.15(11)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H... A	D... A	D-H...A
O4- $\mathrm{H} 41 \cdots{ }^{\text {a }}$	0.89 (1)	1.91 (1)	2.749 (4)	157(1)
O4-H42.. $\mathrm{O}^{\prime \prime}{ }^{\prime \prime}$	0.89 (1)	2.04 (1)	2.924 (4)	171 (1)

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y, 1-z$.
All H atoms, except the water H atoms, were included at calculated positions and refined using a riding model. The $U_{\text {iso }}$ for H atoms of CH and CH_{2} or the CH_{3} groups were taken as $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atoms, respectively. Atoms H41 and H 42 were found from the difference Fourier syntheses and refined with $U_{\text {iso }}=1.2 U_{\text {eq }}($ water O$) ; \mathrm{O}-\mathrm{H}$ distances were restrained to be equal.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: XCAD4 (Harms, 1997). Program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP (Siemens, 1996b). Software used to prepare material for publication: SHELXL97.

We thank the head of the X-ray diffraction section, Professor Dr W. Massa (University of Marburg), for making diffractometer time available.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1284). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.

Harms, K. (1997). XCAD4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Reinen, D. \& Atanasov, M. (1991). Magn. Res. Rev. 15, 167-239.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. Program for the Refinement of Crystal Structures. University of Göttingen, Germany. Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1994). PLATON. Program for Molecular Geometry. University of Utrecht, The Netherlands.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O, N, O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
Warda, S. A. (1997). Acta Cryst. C53, 697-699.
Warda, S. A. (1998). Acta Crvst. C54, 187-189.

Acta Cryst. (1998). C54, 1238-1240

Dibromo(diethyl ether-O)(diisopropyl-amine- N)magnesium(II)

Kenneth W. Henderson and Alan R. Kennedy
Department of Pure \& Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. E-mail: a.r.kennedy@ccsun.strath.ac.uk

(Received 27 January 1998; accepted 3 March 1998)

Abstract

The coordination geometry at the Mg atom in the title complex, $\left[\mathrm{MgBr}_{2}\left\{\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NH}\right\}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}\right\}\right]$, is shown to be distorted tetrahedral. The presence of a secondary amine ligand is unusual in its derivation from an amide. It is also unusual to find both an ether and a simple amine solvating the same magnesium centre $[\mathrm{Mgl}-\mathrm{N} 1$ 2.158 (3) and $\mathrm{Mgl}-\mathrm{Ol} 2.041$ (3) A A .

\section*{Comment}

As part of our continuing investigations of the organometallic complexes present during the course of Mg-mediated enolization reactions (Allan et al., 1997, 1998), we were interested in preparing a range of halomagnesium enolate complexes. This was attempted by the reaction of Hauser bases $\left(R_{2} \mathrm{NMg} X\right.$, where $R=$ alkyl or aryl, and $X=$ halide) with ketones carrying an α-proton. Unless the reaction conditions for this transformation are very tightly controlled, the halomagnesium enolate complexes undergo a dismutation

reaction into the respective dihalides and dienolates. This paper discusses the structure of one such dihalide, $\left[\mathrm{MgBr}_{2}\left(\mathrm{OEt}_{2}\right)\left(\mathrm{NH}^{i} \mathrm{Pr}_{2}\right)\right]$, (I), which is unusual in that the rehydrogenated amine is present as a donor ligand.

(I)

The crystal structure consists of monomeric molecular units, with the closest intermolecular interaction being that of $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Br} 2^{i}\left[\mathrm{~N} 1 \cdots \mathrm{Br} 2^{i} 3.659(3), \mathrm{H} 1 \cdots \mathrm{Br} 2^{\mathrm{i}}\right.$ $2.78 \AA$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{2} 163^{\circ}$; symmetry code: (i) $2-x, 1-y,-z]$. The coordination geometry about the Mg atom is distorted tetrahedral, the largest deviation from ideal geometry being the wide $\mathrm{Nl}-\mathrm{Mg} 1-\mathrm{Br}$ angle of $120.35(11)^{\circ}$ (Table 1). That the angle from N1 to the second bromide ligand is smaller [$\mathrm{N} 1-\mathrm{Mg} 1-$ $\left.\mathrm{Br} 2102.28(10)^{\circ}\right]$ is a consequence of the molecular conformation adopted by (I). The substituents about the $\mathrm{Mg}-\mathrm{N}$ bond are eclipsed [$\mathrm{Ol}-\mathrm{Mg} 1-\mathrm{Nl}-\mathrm{C} 46.7$ (3), $\mathrm{Brl}-\mathrm{Mg} 1-\mathrm{N} 1-\mathrm{Cl}-12.9$ (3) and $\mathrm{Br} 2-\mathrm{Mgl}-\mathrm{N} 1-$ $\mathrm{H} 14.2^{\circ}$]. Thus, the $\mathrm{Br}-\mathrm{Mgl}-\mathrm{N} 1$ angle opens to relieve the steric interaction between Brl and the synisopropyl group. In contrast, as Br 2 lies syn to Hl , there is little steric repulsion $(\mathrm{Br} 2 \cdots \mathrm{H} 13.25 \AA)$. The wider angle at Mg 1 from Br 2 to Ol , as opposed to that from Brl, may similarly be explained by the steric strain imposed by Br 2 being syn to an ethyl group [$\mathrm{Br} 2-$ $\left.\mathrm{Mgl}-\mathrm{O} 1-\mathrm{C} 7-5.4(3)^{\circ}\right]$.

Fig. 1. ORTEPII (Johnson, 1976) view of (I). Non-H atoms are shown as 40% probability ellipsoids and H atoms as small spheres of arbitrary radii.

